RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells

نویسندگان

  • Omer Kaspi
  • Abraham Yosipof
  • Hanoch Senderowitz
چکیده

An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Stitching of the Computed Radiology images Using a Pixel-Based Approach

In this paper, a method for automatic stitching of radiology images based on pixel features has been presented. In this method, according to the smooth texture of radiological images and in order to increase the number of the extracted features after quality enhancement of initial radiology images, 45 degree isotropic mask is applied to each radiology image to observe the image details. After t...

متن کامل

De-RANSAC: Decentralized RANSAC for Sensor Networks

This paper studies the problem of distributed consensus in the presence of spurious sensor information. We propose a new method, De-RANSAC, which allows a multi-agent system to detect outliers—erroneous measurements or incorrect hypotheses—when the sensed information is gathered in a distributed way. The method is an extension of the RANSAC (RANdom SAmple Consensus) algorithm, which leads to a ...

متن کامل

Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography

A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/ smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper d...

متن کامل

DIRSAC: A directed sample and consensus algorithm for localization with quasi-degenerate data

We propose a new method that uses an iterative closest point (ICP) algorithm to fit three‐ dimensional points to a prior geometric model for the purpose of determining the position and orientation (pose) of a sensor with respect to a model. We use a method similar to the Random Sample and Consensus (RANSAC) algorithm. However, where RANSAC uses random samples of points in the fitting trials, DI...

متن کامل

RANSAC: Identification of Higher-Order Geometric Features and Applications in Humanoid Robot Soccer

The ability for an autonomous agent to selflocalise is directly proportional to the accuracy and precision with which it can perceive salient features within its local environment. The identification of such features by recognising geometric profile allows robustness against lighting variations, which is necessary in most industrial robotics applications. This paper details a framework by which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017